MSE: 797238619.53, R²: 0.095
Analytics Model
Here we used unsupervised and regression modeling techniques to analyze job clusters and predict salaries. We use KMeans clustering to identify patterns in job roles based on salary and experience, followed by a multiple linear regression model to evaluate how well experience can predict salary.
Here we have 4 cluster groups. Group 0, which represent as green have lower salary, mostly under 150k, and max years experience in 2-5 years, it is likely Likely junior to mid-level employees with moderate pay. Group 1 with orange, has medium to high salary, wide range from $100k–$500k and with narrow range ~3 years, they are suggests specialized or high-paying roles with short experience — possibly fast-track promotions or high-demand fields. cluster 2 are low salary and experience from 0-4 years, they are clearly entry level employee. cluster 3 has medium salary, mostly under 200k with higher experiences, like 6-13 eyars. They probably are senior professionals with more experience but not the highest salaries.
This plot shows the Actual vs. Predicted Salary using a multiple linear regression model. The blue dots represent individual predictions, and the red dashed line is the ideal line where predicted = actual. Since most points lie very close to the red line, it means your model predicts salary very accurately, with minimal error and strong linear fit — likely reflected in a high R² score near 1.0.